
Technical Note 1367 

~ Pergamon 
lnt. J. HeatMaysTransJbr. V o L 4 1 ,  N o .  10, pp.  1367 1369, 1998 

~'] 1998 Elsevier  Science Ltd  
Pr in ted  in G r e a t  Bri ta in .  All  r ights  reserved 

0017 9310/98 $ 1 9 . 0 0 + 0 . 0 0  

PII: S 0 0 1 7 - 9 3 1 0 ( 9 7 ) 0 0 1 9 8 - 1  

Heat transfer between two opposed non-isothermal counter-rotating 
jets 

W . J. S H E U  a n d  N.  C. L I O U  

Department  of  Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan 

( R e c e i v e d  12 A p r i l  1996 a n d  in f i n a l  f o r m  4 A p r i l  1997) 

1. INTRODUCTION 

Momen tum and heat transfers in rotating flow fields are of  
practical interest due to the relevance to some industrial 
devices such as rotating machinery and heat exchangers. 
Compared with the straining effect, less attention was paid 
to the effect of  rotation on fluid mechanics and heat transfer. 
Recently the effect of  counter-rotation on opposed jets has 
received considerable attention in the field of  combustion [1- 
5] because the opposed counter-rotating jets are typical flows 
to analyze the effects of  stretch on flames. However, for 
mathematical  simplicity, some crucial assumptions such as 
approximations of constant  density and thermodynamic 
properties, negligible viscous effect, and the same tem- 
perature at the exits of  two opposed jets, were made in these 
studies. 

The process of  heat transfer was absent due to the lack of 
temperature gradient between two jets [5]. Consequently, the 
aspects of  fluid mechanics and heat transfer obtained from 
the model of  isothermal (incompressible) counter-rotating 
jets are obviously inadequate from a fundamental  point of  
view. Further investigation of  the flow field and heat transfer 
for non-isothermal counter-rotating jets is necessary because 
this issue is significant in the non-isothermal turbulent 
modeling. 

2. ANALYSIS 

For low-Mach-number,  non-isothermal and axisymmetric 
viscous opposed jets of  infinite radial extent and finite axial 
separation distance under counter-rotation (the inset of  Fig. 
1), the appropriate governing equations and boundary con- 
ditions are well known. 
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Fig. 1. ~],/qd and q vs e) (ReL = 600, P r  = 1 and 7 ~ L = 0.8). 
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The dimensionless variables and parameters are intro- 
duced as follows 

r=~,'L -=~/L p=~, A, ~=~/ff/, 

P =  ~/ f i t  f f  "2, T =  7?/T, ,  I t =  fi/fit,,  

The transformed coordinate ~ is defined as 

~ = p dz., p d= (2) 
I / - I 

In terms of the coordinate 4, the problem of  interest admits 
similar solutions 

p = p(~), u = rF(~)/2, v = rH(~), 

w = G(~ ) /p ,  P = b r 2 / 2 + h ( { ) ,  T - .  T(~)  (3) 

that satisfy the following dimensionless equations 

G' + cF = 0 (4) 

R e g I F " + 2 c 2 H  2 = 2 b c 2 T + c F ' G + c ~ F 2 / 2  (5) 

Re). I H " = c 2 F H +  cGH" (6) 

Pr  LRe~t  T"  = c G T "  (7) 

p r =  1 (8) 
with the boundary conditions 

F = 0 ,  H =  R o  l = ( o ,  

G =  1, T =  1 a t { =  1 (9) 

F = 0 ,  H =  - R o  i = - ~ o ,  

G = p L, T = T • a t { = 0  (10) 

where the Rossby number  is R o  = I,P/eS/S = ~o t [5]. The 
dimensionless eqn (8) is the ideal-gas equation of  state. Here 
the values of  ~ and k2 are taken constant  due to k ~ 7~- 

~ T and p ~ if physically [6] and the specific heat #p is 
assumed to be a constant. The coefficient c in eqns (4) (7) is 
given by 

c =  p d z  ~ 2 L T d ~  (11) 
I i ~ () 

Heat transfer from the high-temperature jet to the low- 
temperature one occurs at the interface plane and in the axial 
direction. The definition of  interface plane here is a location 
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b coefficient defined in eqn (3) 
c coefficient defined in eqn (11) 
?p specific heat at constant  pressure 
F dimensionless function defined in 

eqn (3) 
G dimensionless function defined in 

eqn (3) 
h dimensionless function defined in 

eqn (3) 
H dimensionless function defined in 

eqn (3) 
/~ half separation distance between jets 
P dimensionless pressure, P = ff/~L I~2 
/~ pressure 
Pr Prandtl number,  Pr = CvPL/2L 
q dimensionless heat flux (efficiency of heat 

transfer), q = I~/JOLgp~'7~L 
q heat flux 
qd heat flux in the limit of  heat conduction 
r dimensionless radial coordinate, r = ~//~ 
ReL Reynolds number,  ReL = ~L ff'IS/fiL 
Ro Rossby number,  Ro = eJ-L 
T dimensionless temperature, T = 7~/7~L 

temperature 
u dimensionless radial velocity, u = ~/ l~  

radial velocity 
v dimensionless circumferential velocity, 

g circumferential velocity 
w dimensionless axial velocity, w = ~i~/I~ 
~', axial velocity 
if" axial velocity at jet exit 

radial coordinate 

NOMENCLATURE 

r 

z 

dimensionless radial coordinate, r = P//S 
axial coordinate 
dimensionless axial coordinate, z = z-/L. 

Greek symbols 
). dimensionless thermal conductivity, 

thermal conductivity 
dimensionless viscosity, # = ~/~L 
viscosity 
transformed axial coordinate defined in eqn 
(2) 

p dimensionless density, p = P /PL 
15 density 
o~ dimensionless jet angular speed, o) = ~b/S/1~ 

jet angular  speed 
~ characteristic jet angular speed, 

f~ dimensionless jet angular speed, f~ = C~/dJ~. 

Subscripts 
d limit of  heat conduction 
L refers to upper jet 
- L refers to lower jet 
r reference angular  speed 
s interface plane. 

Superscripts 
differentiation with respect to 

- dimensional quantity 
velocity vector. 

where the axial velocity approaches zero, Because the axial 
velocities of  both opposed jets vanish at the interface plane, 
the heat transfer between two jets is readily evaluated by heat 
conduction. As a result, the heat flux between two jets equals 

q = 12(07~/a2)~ .~1 (12) 

The magnitude of q can be also calculated according to the 
law of energy conservation. 

~__ . . . .  ~ ~ ~2 . . . .  2n pcpruT dz+r t r  q = pLCpnr - I~T L (13) 

For convenience of physical presentations, we define a 
dimensionless heat flux q = q/~LZ~p I~7~L that means  a ratio of  
the heat flux across the interface plane to the flux of thermal 
energy originally emerging from the hot  upper jet. According 
to this dimensionless form, the magnitude of q can be physi- 
cally viewed as the efficiency of  heat transfer for the problem 
of interest. In terms of  dimensionless variables (1), eqn (12) 
is expressed as 

1 
q = c e r  ReL I(~T/~0¢=¢ I (14) 

The problem governed by eqns (4) (8) with boundary 
conditions (9) and (10) is a standard two-point boundary- 
value problem. It is solved numerically by means  of an exist- 
ing computer-library subroutine (BVPFD from I M S L  User's 
Manual ,  1989). The computat ional  tolerance in all cal- 
culationsis 10 6. The numerical results are expressed in terms 

of the dimensionless spatial coordinate z according to the 
following relationship 

z = c f [  T d ~ - I  (15) 

3. DISCUSSION AND CONCLUSIONS 

From a physical point of  view, the thermal energy is trans- 
ported by two processes, namely heat conduction a)ad heat 
convection. For convenience of physical interpretations, a 
case in the limit of  heat conduction is considered first. In this 
limit, all velocities approach zero. Consequently the energy 
eqn (7) is reduced to 

T" = 0 (16) 

subject to the boundary conditions 

T -  1 a t e =  1 and T =  T L a t e = 0  (17) 

In this limit, the heat flux between two ends (q~) is readily 
solved for a given problem. To make a comparison with the 
heat transfer for swirling jets, a ratio of  heat flux q/qd as a 
function of~o (Ro L) is presented in Fig. 1. According to this 
figure, the magnitude of  q/qd is invariably greater than unity 
and decreases with co. The process of  heat conduction plays 
a more important  role in the transport  of  thermal energy for 
greater o because the convective velocity in the axial direc- 
tion near the interface plane (z ~ 0) is reduced as o increases 
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[5]. With the same boundary conditions of  temperature, the 
rate of  heat transfer by heat conduction is less than that by 
heat convection in fluids such that the magnitude of  q/qd is 
invariably greater than  unity and decreases with co. The 
dependence o f q  on ~ is also illustrated in Fig. 1. The value 
of q decreases with co, as expected physically. The efficiency 
of  heat transfer from the high-temperature to the low-tem- 
perature swirling jet decreases as co increases or the Rossby 
number  decreases. 

The efficiency of heat transfer q vs co for Pr = 0.7, 1.0 and 
1.3 is presented in Fig. 2. According to this figure, for fixed 

the efficiency of heat transfer between two swirling jets 
decreases with Pr. Physically, the rate of  heat transfer 
decreases as the thermal diffusivity decreases. As a result, a 
smaller efficiency of heat transfer is expected for greater Pr. 

From a practical point of  view, thevariat ion of  heat trans- 
fer with the axial injection velocity (W) is of  interest. Accord- 
ing to the definitions, the magnitudes of both Ree and Ro 
increase with the axial injection velocity for a given fluid. 
The effect of  ReL on q for ReL = 300 and 600 is illustrated in 
Fig. 3. Because the axial injection velocity is involved in the 
definition of Ro, a dimensionless rotating speed is defined as 
f~ = ~)/6)r in Fig. 3, where the characteristic jet angular  speed 
¢Y)r (=  [~'R,,, 600/L) is a reference speed. The results reveal 
that the magnitude of  q for Ree = 300 is greater than that 
for Ree = 600 for smaller f~ whereas a converse behavior 
occurs tbr ~ > 0.65 according to Fig. 3. The physical reasons 
for this converse phenomenon are as follows. The axial injec- 
tion velocity W for ReL = 300 is half that for ReL = 600 for 
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Fig. 2. Efficiency of  heat transfer q vs co for Pr = 0.7, 1.0 and 
1.3 (ReL = 600 and T L = 0.8). 
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Fig. 3. Efficiency of heat transfer q vs Q for Ret, = 300 and 
600 (Pr = 1 and T i = 0.8). 

the given E and fluid. Thus,  with increasing the jet angular 
velocity the reduction ratio of  axial velocity is expected to 
be greater for smaller ff'(Ree). Because the effect of  heat 
convection on heat transfer decreases with this reduction 
ratio, there is an intersection of q for ReL = 300 and 600 in 
Fig. 3. From a viewpoint of  heat transfer, the effÉciency of  
heat transfer for smaller Ree is better than that for greater 
ReL only when the jet angular  speed is small. 
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